Research from overseas suggests that the neighbourhood and community in which children live influence children’s development. Is this the case in Australia and, if so, which children are most affected?

Hillary Clinton popularised the saying “It takes a village to raise a child” with her book, *It Takes a Village* (1996). In it she argued that the community plays a key role in children's development. There is a large body of international research that documents neighbourhood influences on children’s developmental outcomes (for example, Leventhal and Brooks-Gunn 2000). However, there are few studies of neighbourhood effects on Australian children.

This issue is relevant to community development policies devised by federal and state governments that aim to foster positive childhood development. For example, the Australian Government’s Stronger Families and Communities Strategy aims to build stronger families and communities, and encourage economic and social participation. One of the ideas underpinning this and other similar policies is that building a stronger community or neighbourhood will result in better outcomes for children and their families. Of particular importance is the influence that communities and neighbourhoods have on young children, as the first five years of a child’s life are seen to impact on the rest of their lives.

Do neighbourhoods affect Australian children’s wellbeing and development?

A search of the literature suggested that the research on neighbourhood effects on Australian children is limited to three studies focusing on children’s physical activity and obesity (Timperio, Crawford, Telford and Salmon 2004; Hume, Salmon and Ball 2005; Timperio, Salmon, Telford and Crawford 2005), and one older study on children's emotional and social adjustment (Homel and Burns 1989).

Homel and Burns (1989) reported that children with higher levels of worry, fear, anger and unhappiness lived in disadvantaged neighbourhoods (neighbourhoods where a higher percentage of the workforce were unemployed and unskilled, and a higher percentage of single parents). Children living in these disadvantaged neighbourhoods also had lower levels of social adjustment than those living in more advantaged neighbourhoods.

Aspects of the physical environment of neighbourhoods have been associated with physical activity and obesity in Australian children (Timperio et al. 2004; Hume et al. 2005; Timperio et al. 2005). For instance, girls aged 5-6 and 10-12 years were less physically active if public transport was limited in their neighbourhood, if they had to cross several roads to reach play areas (older girls only), and if there were no parks or sports grounds near home (older girls only). Boys aged 10-12 years were also less physically active if there were no lights or crossings in their neighbourhood. Data from the same study also suggested that 10-12 year old children were more likely to be overweight or obese when there was heavy traffic in local streets and when their parents were concerned about road safety (Timperio et al. 2005).
The importance of Australian research evidence on neighbourhood effects is reinforced by the evidence of a growth in income inequality between neighbourhoods in Australia. For example, Gregory and Hunter (1995) and Hunter and Gregory (2001) used aggregated Census data to demonstrate that, between 1976 and 1991, average household income increased 23 per cent in the 5 per cent of neighbourhoods with the highest socio-economic status and fell 23 per cent in the 5 per cent of neighbourhoods with the lowest socio-economic status. Job losses were also reported to be concentrated in neighbourhoods with low socio-economic status.

The growth in neighbourhood income inequality since the 1970s in Australia mirrors what has occurred in other developed countries such as the United States and Canada. Hunter (2003) compared the neighbourhood inequality of family income in Australia, the United States and Canada and reported that, while there was less neighbourhood inequality in Australia than in Canada and the United States, the increase in neighbourhood inequality of family income in Australia between 1976 and 1996 was comparable to that in the other two countries.

Neighbourhood research on children in North America

Much of the impetus for the study of neighbourhood effects on children in the United States has been credited to William Julius Wilson’s book The Truly Disadvantaged (Wilson 1987) in which he argued that the concentration of joblessness and poverty that was being observed in the inner cities of North America would have detrimental effects on families and children living in these impoverished neighbourhoods. Given that there has also been an increase in the concentration of joblessness and lower income families in Australian neighbourhoods, it may be that neighbourhood effects similar to those seen in North America exist in the Australian context.

The majority of studies of neighbourhood effects on children have used administratively defined units (such as postcodes) to characterise neighbourhoods. Postcodes have the advantage of being able to include aggregated census information as a source of information about neighbourhood characteristics. However, there are some limitations with this definition of neighbourhood that are outlined later in the discussion section. The three dimensions that have been examined most frequently have been income or socio-economic status (affluence/high socio-economic status and poverty/low socio-economic status), racial/ethnic diversity, and residential stability. Racial/ethnic diversity has been used because it has been argued that neighbourhoods characterised by ethnic and linguistic heterogeneity may impede the capacity of residents to engage and communicate with one another. Residential stability has been argued to be important as it takes time for residents to get to know each other and build relationships.

The first wave of neighbourhood research focused on whether such neighbourhood characteristics were associated with children’s outcomes. The general conclusion drawn from this research was that neighbourhoods indeed matter to children, with neighbourhood characteristics being associated with children’s school readiness and achievement, behavioural and emotional outcomes, early childbearing and physical health (for details the interested reader is referred to an excellent review by Leventhal and Brooks-Gunn, 2000). Neighbourhood socio-economic status was particularly important, with lower levels of neighbourhood socio-economic status associated with poorer learning and behavioural outcomes (Leventhal and Brooks-Gunn 2000).

The second wave of neighbourhood research that began in the mid 1990s moved beyond simply establishing the importance of neighbourhood effects, to investigate the social and institutional mechanisms by which neighbourhoods affect children (Sampson, Morenoff and Gannon-Rowley 2002). Sampson et al. (2002) reviewed studies conducted in several countries on these mechanisms in relation to adult and child outcomes (none of these studies was Australian). In relation to children’s outcomes they concluded that strong social ties were not as important for child wellbeing as the shared expectation that neighbours would intervene on behalf of the neighbourhood; that concentrated poverty, physical and social disorder, and low neighbourhood cohesion were associated with greater adolescent psychological distress; and that measures of neighbourhood socio-economic disadvantage were still associated with wellbeing when neighbourhood social and institutional processes were included.
It should be noted that the investigation of neighbourhood social and institutional processes is still a relatively new area and a larger evidence base in relation to children’s outcomes needs to be developed.

Are neighbourhood effects real?

The studies of neighbourhood effects on children described above have the limitation of selection bias – neighbourhood effects may be due to parents’ decisions to live in poor neighbourhoods (Leventhal and Brooks-Gunn 2000). In other words, how do we know that the neighbourhood effects on children are the result of neighbourhood characteristics rather than the increased likelihood of particular families choosing certain neighbourhoods to live in?

Several experimental and genetic studies suggest that neighbourhood effects are real. For example, a recent study randomly allocated 4,248 participating families living in public housing in the United States to three groups (Orr, Feins, Jacob et al. 2003). The first group received vouchers to move to low poverty areas, the second received a voucher that could be used to move to any area, and the third received assistance but no voucher enabling them to move. Random allocation of families to these groups removes any systematic bias of belonging to a particular group and, as a result, any differences found between these three groups could be said to be a result of moving into a new neighbourhood (that is, the intervention). The two groups of families that received vouchers to move included families that moved and those that had chosen to stay in their neighbourhoods. This is the most conservative approach to determining the effects of the experiment as about 1 in 2 families in each of the groups that received vouchers actually moved.

Moving to low poverty neighbourhoods was beneficial in several areas. Parents’ and children’s mental health (Katz, Kling and Liebman 2001; Leventhal and Brooks-Gunn 2003; Orr et al. 2003), boys’ educational outcomes (Leventhal and Brooks-Gunn 2004), and parents’ obesity levels (Orr et al. 2003) were significantly better in the group that was given the opportunity to move to low poverty areas (the first group) than in the group that was given no assistance to move (the third group). Families who were given a voucher to move to any area (the second group) were not significantly different from families that were not given assistance to move (the third group).

A different study attempted to control for selection bias by employing a “genetic design” that tested whether growing up in deprived neighbourhoods mattered above and beyond a genetic predisposition to develop behaviour problems while accounting for the family environment (Caspi, Taylor, Moffitt and Plomin 2000). Results suggested that children in deprived neighbourhoods were at risk for emotional and behavioural problems even when controlling for any genetic predisposition. This suggests that neighbourhoods exert a true environmental effect. The results from the experimental study and the genetic design study both suggest that neighbourhoods exert a real effect on children’s outcomes.

LSAC and neighbourhood effects

The Longitudinal Study of Australian Children (LSAC), also known as Growing Up in Australia, was specifically designed to allow an examination of neighbourhood effects on children (Sanson, Nicholson, Ungerer, et al. 2002).

The wide range of variables included in the study overcomes one of the other criticisms of other neighbourhood

Box 1 Detailed information about the measures

The LSAC Outcome Indices: Components of the Physical, Social/Emotional and Learning domains

The overall outcome index consisted of three domains: physical, social/emotional and learning. A description of the components of each of these domains for the 4-5 year old cohort follows.

The Physical domain consisted of the child’s body-mass index, parental ratings of the child’s overall health and whether the parent thought the child needed more health care than the average child. The Physical scale of the Pediatric Quality of Life Inventory was also in this domain and it assesses children’s motor coordination and general health (PedsQL; Varni, Burwinkle, Seid and Skarr 2003).

The Social/Emotional domain was comprised of the five scales from the Strengths and Difficulties Questionnaire (SDQ; Goodman 2001). The Prosocial scale assesses the child’s propensity to be considerate and helpful to others, while the Peer Problems scale was re-scored so that higher scores reflected the absence of negative relationships with other children. The Emotional Symptoms scale measures the frequency that the child displays emotional states such as anxiety and fear, while the child’s tendency to display problem behaviours was assessed via the Conduct Problems scale. The Hyperactivity scale assessed the child’s fidgetiness, concentration span and impulsiveness.

The Learning domain consisted of parent and teacher ratings of reading skills and teacher ratings of writing and numeracy skills. In addition, a short form of the Peabody Picture Vocabulary Test (PPVT-III; Dunn and Dunn 1997) was used to measure children’s knowledge of the meaning of spoken words, and receptive vocabulary.

The SEIFA Index of Advantage/Disadvantage

As stated in the main text, the SEIFA Index of Advantage/Disadvantage is a measure of economic advantage and disadvantage in an area. It is a composite of 31 variables – for example, income, unemployment, occupation and education. The ABS reports that the SEIFA index has good validity based on analyses using the Australian census (Trewin 2001).

It should be noted that, because of the remoteness of some postcodes and the small number of children living therein, there was not an equal proportion of LSAC children in the quintiles based on the SEIFA scores. Only 43 per cent of children were in the three most disadvantaged neighbourhood quintiles (1st quintile, n=638, 12.8 per cent of the LSAC sample; 2nd quintile, n=538, 10.8 per cent; 3rd quintile, n=960, 19.3 per cent). The remaining 57 per cent were in the two most advantaged neighbourhood quintiles (4th quintile, n=1459, 29.3 per cent of the LSAC sample; 5th quintile, n=1388, 27.9 per cent).
studies, that key variables have been omitted (Leventhal and Brooks-Gunn 2000). The sampling of neighbourhoods (postcodes) from across Australia ensures sufficient diversity in neighbourhood environments, thus maximising the ability to detect neighbourhood effects. The linkage of the LSAC data with postcode level data from the Australian Bureau of Statistics (ABS) census and the Socio-Economic Indices for Areas developed by the ABS (Trewin 2001) enables neighbourhood level variables to be constructed. Moreover, parents were directly asked about many characteristics of their neighbourhoods, enabling a diverse range of neighbourhood variables to be created.

Drawing on LSAC data, this study examines whether a measure of neighbourhood socio-economic advantage and disadvantage is associated with 4-5 year old Australian children’s physical, social/emotional and learning outcomes even when controlling for several child and family socio-demographic factors. Using child and socio-demographic as controls limited the likelihood that neighbourhood influences reported in this study were the result of selection bias as several socio-demographic factors such as family income may be associated with parents’ decisions to live in a particular neighbourhood. This study also investigates whether there are particular groups of children who are more or less affected by neighbourhoods. The average age of the 4,976 children in this cohort was 4.7 years, and ranged from 4.3 to 5.6 years. More detailed information about the design, data collection procedures and basic demographic information can be found on pages 4-9 of this issue of Family Matters (see also Growing up in Australia: The Longitudinal Study of Australian Children: 2004 Annual Report).

Box 2 Statistical analyses

Conventional statistical techniques such as multiple regression assume that children’s outcomes in one family are independent of those of children in another family. However, as the LSAC study sampled multiple children from the same postcodes, children who live in the same postcode are likely to have more similar outcomes than children residing in different postcodes. The degree of similarity in children’s outcomes in the same postcode affects the accuracy of the results obtained from many statistical techniques.

Linear random effect regression models (also referred to as mixed models, random coefficient models, hierarchical linear models and multilevel models) are one way to obtain accurate estimates of the effect of neighbourhood disadvantage on children’s outcomes as they control for the similarity in children’s responses due to living in the same postcode (Snijders and Bosker 1999). As children reside within neighbourhoods (postcodes), the linear random effect regression models partition the variation in children’s scores on the outcome indices into the family level (level 1) and the neighbourhood level (level 2) variation. This enables accurate estimation of the determinants (for example, neighbourhood disadvantage or child’s gender) of children’s outcomes. More details about the statistical analysis are included in the appendix available on request.

All linear random effect regressions included one of the four LSAC outcome indices as the outcome in analyses. A series of analyses was undertaken. First, the Index of Advantage/Disadvantage was included alone, to see if there was a relationship with the LSAC outcome indices. Second, the control variables were included along with the Index of Advantage/Disadvantage. Third, the possibility that particular children may be more affected by neighbourhood disadvantage was investigated. The variables included to test whether particular children were more vulnerable to the effects of neighbourhood disadvantage were child sex, weekly income, employment in household, one or more parents were born overseas, and mother’s education.

Measures

As neighbourhood have been found to affect children in a variety of domains, children’s outcome measures needed to be broad. Consequently the LSAC outcome indices covering physical, social/emotional and learning domains (Sansom, Misson, Wake et al. 2005). For this article, the outcome indices were standardised so that the mean score for the overall outcome index and the three domains were 100 and the standard deviation was 10. The overall Outcome Index is an equally weighted composite of the three domains. Details of the measures that were used to create the three domains are outlined in Box 1.

The neighbourhood measure was the Socio-Economic Indices for Areas (SEIFA) Index of Advantage/Disadvantage (Trewin 2001). The SEIFA Index of Advantage/Disadvantage is a measure of economic advantage and disadvantage in an area. Lower scores indicate more disadvantage and less advantage and higher scores indicate the reverse. To aid interpretability, the continuous SEIFA score was separated into five levels (quintiles) based on national rankings of postcodes. The first quintile was the most disadvantaged, while the fifth quintile was the most advantaged. More details about the SEIFA index can be found in Box 1.

Several variables were also included to control for factors that may predispose families to live in particular neighbourhoods – parents’ combined weekly income (here called family income), child’s gender and age, whether the child is of Aboriginal or Torres Strait Islander origin, in a single-parent household, in a household where no one worked, in a household where one or both parents were born overseas, and mother’s education.
A preliminary description of the data

All four child outcome variables and the control variables were compared across the five quintiles of neighbourhood disadvantage. All four children's outcomes increased steadily from the most disadvantaged neighbourhood quintile to the most advantaged. As would be expected, average weekly family income was lowest in the more disadvantaged neighbourhood (on average, $8916.71) and highest in the most affluent neighbourhood quintile (on average, $1658.24).

A greater percentage of children living in the most disadvantaged neighbourhood were of Aboriginal and Torres Strait Islander origin (7.5 per cent) than in the other four neighbourhood quintiles (1.9-4.8 per cent). A single parent headed 20 per cent of families living in the most disadvantaged neighbourhoods, while 7.9 per cent of families in the most advantaged neighbourhoods were headed by single parents.

There was also a gradual increase in the proportion of families in the neighbourhood quintiles where at least one parent was employed (from 77 per cent in the most disadvantaged neighbourhood quintile to 96 per cent in the most advantaged neighbourhood quintile). Children's age was similar across the neighbourhood quintiles and the percentage of girls in each level of neighbourhood disadvantage was approximately 50 per cent.

Do neighbourhoods affect Australian children's developmental outcomes?

The SEIFA Index of Advantage/Disadvantage had a significant association with the Overall Outcome Index, and the Physical, Social/Emotional and Learning domains when it was the only variable included in the model. When the variables that were used to control for selection bias were also included (weekly family income, child age and gender, child is of ATSI origin, single parent family, at least one parent employed, mother's highest level of education), the Index of Advantage/Disadvantage was still significantly associated with children's Overall Outcome Index, and the Social/Emotional and Learning domains but not the Physical domain.

These results suggest that the neighbourhood Index of Advantage/Disadvantage was independently associated with the children's Overall Outcome Index, and the Social/Emotional and Learning domains, even when the control variables were taken into account.

Figures 1 to 3 illustrate the mean scores of children on the Overall Outcome Index, and the Social/Emotional and Learning domains, for children living in the five levels of neighbourhood advantage/disadvantage after statistically adjusting for the control variables.

Figure 1 suggests that children's scores on the Overall Outcome Index were higher in more advantaged neighbourhoods. Children in the most disadvantaged quintile had significantly lower scores on the Overall Outcome Index than children living in all other neighbourhoods except the second most disadvantaged neighbourhood quintile. Conversely, children in the most advantaged quintile had significantly higher scores than children living in all other neighbourhoods except those living in the second most advantaged quintile. Other significant differences are also evident from inspection of the confidence intervals.

The overall pattern and differences between neighbourhood quintiles for the Social/Emotional domain (Figure 2) was the same as for the Overall Outcome Index. Children living in the most disadvantaged neighbourhood quintile had significantly lower scores on the Social/Emotional domain than in the three most advantaged quintiles. The reverse pattern was also evident for children living in the most advantaged neighbourhoods.

The pattern of scores for the Learning domain was different across the neighbourhood quintiles (Figure 3) than for the Overall Outcome Index and the Social/Emotional domain. Children living in the middle and the two most disadvantaged neighbourhood quintiles had similar scores on the Learning domain while children from the two most advantaged neighbourhoods had significantly higher Learning domain scores than the other three neighbourhoods. Children living in the most advantaged neighbourhood quintile also had significantly higher scores on the Learning domain than children living in the second most advantaged neighbourhood quintile. The size of the neighbourhood effects are discussed in Box 3.

Are there particular groups of children who are more affected by their neighbourhoods? Children with particular characteristics, or those who come from particular families, may be more affected by the quality of the neighbourhood in which they live. This issue was
investigated with regard to child’s gender, the family’s weekly income, whether at least one parent was employed in the household, when one or more parents was born overseas and whether the child lived in a single parent household, on all four children’s outcomes.

There was only one significant result, with differences between boys and girls on the Social/Emotional domain depending on the quality of the neighbourhood in which they lived. The mean scores for the Social/Emotional domain for boys and girls for each of the five neighbourhood quintiles are illustrated in Figure 4. The figure shows that boys are more affected by neighbourhood disadvantage than girls. Girls’ scores on the Social/Emotional domain are not different across the five neighbourhood quintiles. However, girls in the two most disadvantaged neighbourhood quintiles had significantly higher Social/Emotional scores than boys living in these quintiles.

Discussion

Results from this study suggest that neighbourhood advantage and disadvantage are associated with children’s social/emotional, physical and learning outcomes. Children living in the most disadvantaged neighbourhoods have lower social/emotional and learning outcomes than children living in more affluent neighbourhoods even when family income, parents’ employment status, mother’s education and several other child and family variables are controlled for in analyses.

Although these neighbourhood associations with children’s outcomes are small when using standard measures of effect size, small effects such as these can accumulate over time and have a significant influence in the long term (Abelson 1985; Caspi 2000). Moreover, the neighbourhood effects described were a similar size to that of family income, maternal education and living in a household. It follows then that if the effect size of the neighbourhood Index of Advantage/Disadvantage were comparable to the effect sizes of these control variables, then neighbourhoods are important contributors to children’s outcomes such as family income, maternal education and having an employed parent in the household. The results are also consistent with findings from international studies that suggest that neighbourhood socio-economic disadvantage is associated with poorer outcomes for children (Leventhal and Brooks-Gunn 2000).

One of the most common observations in studies examining neighbourhood effects on children is that these effects are generally small (Leventhal and Brooks-Gunn 2000). One of the standard measures of effect size (Cohen’s d) has criteria that enable the size of a particular effect to be categorised as small, medium and large. Using these criteria, there were small effect sizes for the difference between Overall Outcome Index, Social/emotional and Learning domain scores for children who live in the most disadvantaged and most advantaged neighbourhoods (Overall Outcome Index, Cohen’s $d = .20$, Social/Emotional domain, Cohen’s $d = .16$; Learning domain, Cohen’s $d = .18$). However, as has been commonly observed by other researchers, small effects can accumulate over time to influence outcomes in the long term (Abelson 1985; Caspi, 2000; Rosenthal and Rubin 1979; Yeaton and Sechrest 1981).

Another way to assess neighbourhood effects is to compare the effect size of the Index of Advantage/Disadvantage on the Overall Outcome Index to the effect sizes of some of the control variables. Several of the control variables that were included in the analyses are widely considered to be important contributors to children’s outcomes such as family income, maternal education and having an employed parent in the household. It follows then that if the effect size of the neighbourhood Index of Advantage/Disadvantage were comparable to the effect sizes of these control variables, then neighbourhoods are important contributors to children’s outcomes. The effect sizes for family income, maternal education and having an employed parent in the household on the Overall Outcome Index would also be considered to be small using Cohen’s criteria. The effect size of the neighbourhood Index of Advantage/Disadvantage was only 9 per cent smaller than maternal education, 24 per cent smaller than family income, and 34 per cent smaller than having an employed parent in the household.
Boys who were living in the two most disadvantaged neighbourhoods had lower social/emotional outcomes than boys living in more advantaged neighbourhoods. On the other hand, girls had similar social/emotional scores irrespective of the quality of the neighbourhood they lived in. Previous research from the Moving to Opportunity study also suggested that boys in families who were given support to move to more affluent neighbourhoods had fewer behaviour problems (Katz, Kling and Liebman 2001) and less anxiety and depression (Leventhal and Brooks-Gunn 2003) than boys in families that were not given support to move from impoverished neighbourhoods.

One possible explanation for these findings is that boys are more sensitive to particular aspects of their environment. There is evidence to suggest that young boys are more vulnerable to parents’ psychological and marital difficulties than girls (Earls and Jung 1987). Perhaps boys’ vulnerabilities also extend to neighbourhood socio-economic disadvantage. This issue can be investigated further using data from LSAC.

There are several caveats and comments that need to be made about this analysis.

First, the selection of postcodes enabled administrative data from the Census to be linked with children’s outcomes. However, critics of the postcode approach have pointed out that residents’ perceptions of their neighbourhood may not concur with administrative boundaries (Tienda 1991). Geographic information systems that provide residents’ addresses as coordinates on a map are being advocated as a solution to this issue (Coulton 2005), as they overcome the arbitrary nature of administrative boundaries. Distances between individuals can be calculated from coordinates of their addresses and used to determine the extent to which the residents in their neighbourhoods and adjacent neighbourhoods have similar outcomes (Chaix, Merlo, Subramanian, Lynch and Chauvin 2005). This information could then be used to decide whether a community level intervention should be focussed more broadly than one neighbourhood and include the adjacent neighbourhoods. Such spatial information has been collected in the first wave of LSAC and further analyses using this data will provide some fascinating insights into the neighbourhood influences on children’s development.

Second, the SEIFA Index of Advantage/Disadvantage was the only neighbourhood measure used in the study. A variety of neighbourhood variables have been used in other studies investigating neighbourhood effects. These include signs of physical disorder such as rubbish on the streets and dilapidated housing, pollution, neighbourhood social capital and institutional resources that provide services (for a review of these measures see Sampson, Morenoff and Gannon-Rowley, 2002). Use of a variety of neighbourhood measures of the neighbourhood environment, social and institutional mechanisms will further our understanding of how neighbourhoods affect children. For instance, the effect of neighbourhood socio-economic disadvantage that was found with children’s outcomes may be mediated by family factors such as parenting (Beyers, Bates, Pettit and Dodge 2003), and this could also be explored in further research using the LSAC data set. Clearly, there are many other neighbourhood factors and family processes that may affect or be affected by children’s outcomes. The LSAC has measures of a wide range of neighbourhood and family factors and will be important to further our understanding in this area.

Implications

There are many ways that the negative consequences of growing up in a disadvantaged neighbourhood may be alleviated. Providing more enriching neighbourhoods for children (for example, more libraries and parks) and increased job and economic opportunities for residents of poorer neighbourhoods may alleviate the negative consequences of growing up in a disadvantaged neighbourhood (Jarrett 1999). Other possible strategies include building scattered-site public housing in more advantaged neighbourhoods (Leventhal and Brooks-Gunn 2003). Another possibility is to encourage more affluent families to reside in poor neighbourhoods, thereby changing the socio-economic mix of the area (Leventhal and Brooks-Gunn 2003). Gentrification also typically entails greater service provision (for example, better quality schools) and increased employment opportunities within these neighbourhoods (Leventhal and Brooks-Gunn 2003). However, it is unclear how gentrification affects poorer residents and empirical evidence needs to be gathered about this issue before adopted as a policy option.
Conclusion

The preliminary evidence from this study suggests that neighbourhoods do matter to children’s development and supports the community emphasis of many federal and state government policies. However, it should be noted that there is a very limited evidence base on neighbourhood effects on Australian children, with only three previous Australian studies on neighbourhood effects on physical outcomes, and one study having considered children’s social and emotional adjustment.

Consequently, this appears to be the first Australian study to examine neighbourhood effects on children’s learning outcomes and all three major domains of children’s functioning (physical, social/emotional and learning). Further data about how neighbourhoods affect Australian children is urgently needed and the LSAC will become an invaluable source of such information, especially as it will allow us to document effects over time. Further support for research within this area will enable policies that target community development to be tailored for the maximum benefit of Australian children and their families.

Endnotes

1 This approach retains the integrity of the randomisation so that selection bias is still excluded from the effects of the intervention.

2 Preliminary analyses also included parents’ combined weekly income squared to investigate non-linear relationships with children’s outcomes and income. As there were no non-linear relationships with children’s outcomes in preliminary analyses, income squared was not included in the final statistical analyses.

3 Father’s education was not included because this information may not be known for fathers who are not living in the same household as the child.

4 A table with this information is also available as an appendix on request.

5 The statistical adjustment to average scores displayed in the figures mean that they do not correspond to the raw scores displayed in Table A of the appendix that is available on request.

References

Wilson, W. J. (1987), The truly disadvantaged: The inner city, the underclass and public policy, University of Chicago Press, Chicago.

Dr Ben Edwards is a Research Fellow at the Australian Institute of Family Studies.